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Abstract. The calibration and validation of remote sens-
ing land cover products are highly dependent on accurate
field reference data, which are costly and practically chal-
lenging to collect. We describe an optical method for col-
lection of field reference data that is a fast, cost-efficient,
and robust alternative to field surveys and UAV imaging.
A lightweight, waterproof, remote-controlled RGB camera
(GoPro HERO4 Silver, GoPro Inc.) was used to take wide-
angle images from 3.1 to 4.5 m in altitude using an extend-
able monopod, as well as representative near-ground (< 1 m)
images to identify spectral and structural features that cor-
respond to various land covers in present lighting condi-
tions. A semi-automatic classification was made based on
six surface types (graminoids, water, shrubs, dry moss, wet
moss, and rock). The method enables collection of detailed
field reference data, which is critical in many remote sensing
applications, such as satellite-based wetland mapping. The
method uses common non-expensive equipment, does not re-
quire special skills or training, and is facilitated by a step-by-
step manual that is included in the Supplement. Over time a
global ground cover database can be built that can be used
as reference data for studies of non-forested wetlands from
satellites such as Sentinel 1 and 2 (10 m pixel size).

1 Introduction

Accurate and timely land cover data are important for, e.g.,
economic, political, and environmental assessments, and for
societal and landscape planning and management. The ca-
pacity for generating land cover data products from remote
sensing is developing rapidly. There has been an exponential
increase in launches of new satellites with improved sensor
capabilities, including shorter revisit time, larger area cover-
age, and increased spatial resolution (Belward and Skøien,
2015). Similarly, the development of land cover products is
increasingly supported by the progress in computing capaci-
ties and machine learning approaches.

At the same time it is clear that the knowledge of the
Earth’s land cover is still poorly constrained. A compar-
ison between multiple state-of-the-art land cover products
for West Siberia revealed disturbing uncertainties (Frey and
Smith, 2007) as estimated wetland areas ranged from 2 to
26 % of the total area, and the correspondence to in situ ob-
servations for wetlands was only 2–56 %. For lakes, all prod-
ucts revealed similar area cover (2–3 %), but the agreement
with field observations was as low as 0–5 %. Hence, in spite
of the progress in technical capabilities and data analysis
progress, there are apparently fundamental factors that still
need consideration to obtain accurate land cover information.

The West Siberia example is not unique. Current estimates
of the global wetland area range from 8.6 to 26.9× 106 km2,
with great inconsistencies between different data products
(Melton et al., 2013). The uncertainty in wetland distribu-
tion has multiple consequences, including being a major bot-
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tleneck for constraining the assessments of global methane
(CH4) emissions (Crill and Thornton, 2017), which was the
motivation for this area comparison. Wetlands and lakes
are the largest natural CH4 sources (Saunois et al., 2016)
and available evidence suggests that these emissions can
be highly climate sensitive, particularly at northern latitudes
predicted to experience the highest temperature increases and
melting permafrost – both contributing to higher CH4 fluxes
(Schuur et al., 2009; Yvon-Durocher et al., 2014).

CH4 fluxes from areas with different plant communities
in northern wetlands can differ by orders of magnitude (in
the following, northern wetlands refer to non-forested bo-
real, subarctic, and arctic wetlands). Small wet areas dom-
inated by emergent graminoid plants account for by far the
highest fluxes m−2, while the more widespread areas cov-
ered by, e.g., Sphagnum mosses have much lower CH4 emis-
sions m−2 (e.g., Bäckstrand et al., 2010). The fluxes asso-
ciated with the heterogeneous and patchy (i.e., mixed) land
cover in northern wetlands are well understood on the local
plot scale, whereas the large-scale extrapolations are very un-
certain. The two main reasons for this uncertainty are that the
total wetland extent is unknown and that present map prod-
ucts do not distinguish between different wetland habitats
which control fluxes and flux regulation. As a consequence
the whole source attribution in the global CH4 budget re-
mains highly uncertain (Kirschke et al., 2013; Saunois et al.,
2016).

Improved land cover products relevant to CH4 fluxes and
their regulation are therefore needed to resolve this. The
detailed characterization of wetland features or habitats re-
quires the use of high-resolution satellite data and sub-pixel
classifications that quantify percent, or fractional, land cover.
A fundamental bottleneck for the development of fractional
land cover products is the quantity and quality of the refer-
ence data used for calibration and validation (Foody 2013;
Foody et al., 2016). In fact, reference data can often be any
data available at higher resolution than the data product, in-
cluding other satellite imagery and airborne surveys, in addi-
tion to field observations. In turn, the field observations can
range from rapid landscape assessments to detailed vegeta-
tion mapping in inventory plots, where the latter yields high-
resolution and high-quality data but is very expensive to gen-
erate in terms of time and manpower (Frey and Smith, 2007;
Olofsson et al., 2014). Ground-based reference data for frac-
tional land cover mapping can be acquired using traditional
methods, such as visual estimation, point frame assessment
or digital photography (Chen et al., 2010). These methods
can be applied using a transect approach to increase the area
coverage in order to match the spatial resolutions of different
satellite sensors (Mougin et al., 2014).

The application of digital photography and image analysis
software has shown promise for enabling rapid and objective
measurements of fractional land cover that can be repeated
over time for comparative analysis (Booth et al., 2006a).
While several geometrical corrections and photometric se-

tups are used, nadir (downward facing) and hemispherical
view photography is most common, and the selected setup
depends on the height structure of the vegetation (Chen et al.,
2010). Most previous research has however focused on dis-
tinguishing between major general categories, such as veg-
etation and non-vegetation (Laliberte et al., 2007; Zhou and
Liu, 2015), and is typically not used to characterize more
subtle patterns within major land cover classes. Many appli-
cations in the literature have been in rangeland, while there
is a lack of wetland classification. Furthermore, images have
mainly been close-up images taken from a nadir view per-
spective (Booth et al., 2006a; Chen et al., 2010; Zhou and
Liu, 2015), thereby limiting the spatial extent to well below
the pixel size of satellite systems suitable for regional-scale
mapping.

From a methano-centric viewpoint, accurate reference
data at high enough resolution, being able to separate wetland
(and upland) habitats with differing flux levels and regula-
tion, are needed to facilitate progress with available satellite
sensors. The resolution should preferably be better than 1 m2

given how the high emitting graminoid areas are scattered
on the wettest spots where emergent plants can grow. Given
this need, we propose a quick and simple type of field assess-
ment adapted for the 10× 10 m pixels of the Sentinel 1 and 2
satellites.

Our method uses true color images of the ground, fol-
lowed by image analysis to distinguish fractional cover of
key land cover types relevant to CH4 fluxes from northern
wetlands, where we focus on a few classes that differ in their
CH4 emissions. We provide a simple manual allowing any-
one to take the photos needed in a few minutes per field plot.
Land cover classification can then be made using the red–
green–blue (RGB) field images (sometimes also converting
them to the intensity–hue–saturation (IHS) color space) by
software such as, e.g., CAN-EYE (Weiss and Baret, 2010),
VegMeasure (Johnson et al., 2003), SamplePoint (Booth et
al., 2006b), or eCognition (Trimble commercial software).
With this simple approach it would be quick and easy for
the community to share such images online and to generate
a global reference database that can be used for land cover
classification relevant to wetland CH4 fluxes, or other pur-
poses, depending on the land cover classes used. We use our
own routines written in Matlab due to the large field of view
used in the method, in order to correct for the geometrical
perspective when calculating areas (to speed up the develop-
ment of a global land cover reference database, we can do
the classification on request if all necessary parameters and
images are available as given in our manual).

2 Fieldwork

The camera setup is illustrated in Fig. 1, with lines showing
the spatial extent of a field plot. Our equipment included a
lightweight RGB camera (GoPro 4 Hero Silver; other types
of cameras with remote control and a suitable wide field of
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Figure 1. A remotely controlled wide-field camera mounted on a long monopod captures the scene in one shot, from above the horizon down
to nadir. After using the horizon image position to correct for the camera angle, a 10× 10 m area close to the camera is used for classification.

Figure 2. Correction of lens distortion. (a) Raw wide-field camera image. (b) After correction.

view would also work) mounted on an extendable monopod
that allows imaging from a height of 3.1–4.5 m. The camera
had a resolution of 4000× 3000 pixels with a wide field of
view (FOV) of 122.6× 94.4◦ and was remotely controlled
over Bluetooth using a cellphone application that allows a
live preview, making it possible to always include the hori-
zon close to the upper edge in each image (needed for image
processing later – see below). The camera had a waterproof
casing and could therefore be used in rainy conditions, mak-
ing the method robust to variable weather conditions. Mea-
surements were made for about 200 field plots in northern
Sweden in the period 6–8 September 2016.

For each field plot, the following were recorded.

– One image taken at > 3.1 m height (see illustration in
Fig. 1) which includes the horizon coordinate close to
the top of the image

– Three to four close-up images of the most common sur-
face cover types in the plot (e.g., typical vegetation)
and a very short note for each image indicating what
is shown, e.g., whether a close-up image shows dry or

wet moss (two of our classes), as there can be different
colors within a class.

– GPS position of the camera location (reference point)

– Notes of the image direction relative to the reference
point

A long modified monopod with a GoPro camera mounted at
the end was used for the imaging. The geographic coordi-
nate of the camera position was registered using a handheld
Garmin Oregon 550 GPS with a horizontal accuracy of ap-
proximately 3 m. The positional accuracy of the images can
be improved by using a differential GPS and by registering
the cardinal direction of the FOV. The camera battery lasted
for a few hours after a full charge, but was charged at in-
tervals when not used, e.g., when moving between different
field sites, making it possible to do all the imaging using only
one camera.
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Figure 3. Modeling of lens distortion. Checkboard pattern used for calibrations. Red circles are used to mark automatically detected square
corners, while the yellow square marks the origin of the coordinate system. Images of the pattern are taken from 10 to 20 different camera
angles.

Figure 4. Illustration using Matlab’s Camera calibration application
of the camera positions used when taking the calibration images.

3 Image processing and models

As the camera had a very wide FOV, the raw images do have
a strong lens distortion (Fig. 2). This can be corrected for

many camera models (e.g., the GoPro series) using ready-
made models in Adobe Lightroom or Photoshop, or by mod-
eling the distortion for any camera using the camera calibra-
tor application in Matlab’s computer vision system toolbox
as described below. A checkboard pattern is needed for the
modeling (Fig. 3), which should consist of black and white
squares with an even number of squares in one direction and
an odd number of squares in the other direction, preferably
with a white border around the pattern. The next step is to
take images of this pattern from 10 to 20 unique camera po-
sitions, providing many perspectives of the pattern with dif-
ferent angles for the distortion modeling (Fig. 3). In order
to make accurate models, it is important both to have sharp
images with no motion blur (e.g., due to movement or poor
lighting) and to include several images where the pattern is
close to the edges of the image, as this is where the distortion
is greatest. An alternative but equivalent method, preferably
used for small calibration patterns printed on a standard sheet
of paper (e.g., letter or A4), is to mount the camera and in-
stead move the paper to 10–20 unique positions with differ-
ent angles to the camera. A quick way to do this with only
one person present is by recording a video while moving the
paper slowly and then selecting calibration images from the
video afterwards. The illustration of camera positions used
(Fig. 4) can also be displayed in the application as a mounted
camera with different positions of the calibration pattern. The
next step is to enter the size of a checkerboard square (mm,
cm, or in) which is followed by an automatic identification
of the corners of squares in the pattern (Fig. 3). Images with
bad corner detection can now be removed (optional) to im-
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Figure 5. Calibration of projected geometry using an image corrected for lens distortion. Model geometry is shown as white numbers and a
white grid, while green and red numbers are written on the ground using chalk (red lines at 2 and 4 m left of the center line were strengthened
for clarity). The camera height in this calibration measurement is 3.1 m.

prove the modeling. As a last step, camera parameters can
now be calculated with the press of a button and be saved
as a variable in Matlab (cameraParams). This whole proce-
dure only has to be done once for each camera and FOV set-
ting used, meaning once for a data collection campaign or a
project if the same camera model and FOV are used. Apply-
ing the correction to images is done using a single command
in Matlab: img_corr= undistortImage(img, cameraParams).
Here img and img_corr are variables for the uncorrected and
corrected versions, respectively.

Using a distortion-corrected calibration image, we then
developed a model of the ground geometry by projecting and
fitting a 10× 10 m grid on a parking lot with measured dis-
tances marked using chalk (Fig. 5). Such calibration of pro-
jected ground geometry only needs to be done when chang-
ing the camera model or field of view setting, and is valid
for any camera height as long as the heights used in the field
and in the calibration imaging are known. It is done quickly
by drawing short lines every meter for distances up to 10 m,
and some selected perpendicular lines at strategic positions
to obtain the perspective. At least one, and preferably two,
perpendicular distances should be marked at a minimum of
two different distances along the central line (in Fig. 5 at 2
and 4 m left of the central line at distances along the central
line of 0 and 2.8 m). The geometric model uses the camera
FOV, camera height, and vertical coordinate of the horizon
(to obtain the camera angle). We find excellent agreement

between the modeled and measured grids (fits are within a
few centimeters) for both camera heights of 3.1 and 4.5 m.

The vertical angle α from nadir to a certain point on the
grid with ground distance Y along the center line is given by
α = arctan(Y/h), where h is the camera height. For distance
points in our calibration image (Fig. 5), using 0.2 m steps in
the range 0–1 m and 1 m steps from 1 to 10 m, we calculate
the nadir angles α(Y ) and measure the corresponding vertical
image coordinates ycalib(Y ).

In principle, for any distortion corrected image there is
a simple relationship yimg (α)= (α (Y )−α0)/PFOV, where
yimg is the image vertical pixel coordinate for a certain dis-
tance Y , PFOV the pixel field of view (deg pixel−1), and
α0 the nadir angle of the bottom image edge. In practice,
however, correction for lens distortion is not perfect, so we
have fitted a polynomial in the calibration image to obtain
ycalib (α) from the known α and measured ycalib. Using this
function we can then obtain the yimg coordinate in any sub-
sequent field image using

yimg = ycalib

(
α+PFOVhor×

(
yhor

img− y
hor
calib

))
(1)

where yhor
img and yhor

calib are the vertical image coordinates of
the horizon in the field and calibration image, respectively.
As the PFOV varies by a small amount across the image due
to small deviations in the lens distortion correction, we have
used PFOVhor, which is the pixel field of view at the horizon
coordinate. In short, the shift in horizon position between the
field and calibration images is used to compensate for the
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Figure 6. One of our field plots. (a) Image corrected for lens distortion, with a projected 10× 10 m grid overlaid. (b) Image after recalculation
to overhead projection (10× 10 m).

camera having different tilts in different images. In order to
obtain correct ground geometry it is therefore important to
always include the horizon in all images.

The horizontal ground scale dx (pixels m−1) varies lin-
early with yimg, making it possible to calculate the horizontal
image coordinate ximg using

ximg =xc+X× dx = xc+X×
(
yhor

img− yimg

)
×

dx0

yhor
calib
×
hcalib

himg
(2)

where dx0 is the horizontal ground scale at the bottom edge
of the calibration image, xc the center line coordinate (half
the horizontal image size), X the horizontal ground distance,
and hcalib and himg the camera heights in the calibration and
field image, respectively.

Thus, using Eqs. (1) and (2) we can calculate the image
coordinates (ximg, yimg) in a field image from any ground
coordinates (X, Y ). A model grid is shown in Fig. 5 together
with the calibration image, illustrating their agreement.

For each field image, after correction for image distortion,
our Matlab script asks for the y-coordinate of the horizon
(which is selected using a mouse). This is used to calculate
the camera tilt and to over-plot a distance grid projected on
the ground (Fig. 6a). Using Eqs. (1) and (2) we then recal-
culate the image to an overhead projection of the nearest
10× 10 m area (Fig. 6b). This is done using interpolation,
where a (ximg, yimg) coordinate is obtained from each (X,
Y ) coordinate, and the brightness in each color channel (R,
G, B) calculated using sub-pixel interpolation. The resulting
image is reminiscent of an overhead image, with equal scales
in both axes. There is however a small difference, as the ge-
ometry (due to the line of sight) does not provide information
about the ground behind high vegetation in the same way as

an image taken from overhead. In cases with high vegetation
(which is some of our 200 field plots), mostly high grass,
we used a higher camera altitude to decrease obscured areas.
Another possibility is to direct the camera towards nadir (see
the manual in Supplement S1) to image areas −5 to +5 m
from the center of a plot, further decreasing the viewing an-
gles from nadir. We did not have any problems with shrub
or brushwood as it was only a couple of dm high, and birch
trees did not grow on the mires. We also recommend using
a camera height of about 6 m to decrease obscuration and to
increase the mapped area.

4 Image classification

After a field plot has been geometrically rectified, so that
the spatial resolution is the same over the surface area used
for classification, the script distinguishes land cover types by
color, brightness and spatial variability. Aided by the close-
up images of typical surface types also taken at each field plot
(Fig. 7) and short field notes about the vegetation, provid-
ing further verification, a script is applied to each overhead-
projected calibration field (Fig. 6b) that classifies the field
plot into land cover types. This is a semi-automatic method
that can account for illumination differences between im-
ages. In addition, it facilitates identification, as there can
for instance be different vegetation with similar color, and
rock surfaces that have a similar appearance to water or veg-
etation. After an initial automatic classification, the script
has an interface that allows manual reclassification of ar-
eas between classes. The close-up images have high detail
richness, allowing identification, and color and texture as-
signment of the different land cover classes during similar
light and weather conditions as when the whole-plot image
is taken. This makes results robust regarding different users
collecting data, with respect to light conditions, times of day,
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Figure 7. Close-up images in one of our 10× 10 m field plots (Fig. 6).

etc. The sensitivity is instead affected by the person defining
the classes, just as with normal visual inspection.

For calculations of surface color we filter the overhead
projected field images using a running 3× 3 pixel mean filter,
providing more reliable statistics. Spatial variation in bright-
ness, used as a measurement of surface roughness, is cal-
culated using a running 3× 3 pixel standard deviation fil-
ter. Denoting the brightness in each (red, green, and blue)
color channel R, G and B, respectively, we could for in-
stance find areas with green grass using the green filter index
2G/(R+B), where a value above 1 indicates green vegeta-
tion. In the same way, areas with water (if the close-up im-
ages show blue water due to clear sky) can be found using
a blue filter index 2B/(R+G). If the close-up images show
dark or gray water (cloudy weather), it can be distinguished
from rock and white vegetation using either a total brightness
index (R+G+B)/3 or an index that is sensitive to surface
roughness, involving σ(R), σ(G), or σ(B), where σ denotes
the 3× 3 pixel standard deviation centered on each pixel, for
a certain color channel.

In this study we used six different land cover types of
relevance to CH4 regulation: graminoids, water, shrubs, dry
moss, wet moss, and rock. Examples of classified images are
shown in Fig. 8. Additional field plots and classification ex-

amples can be found in Supplement S2. Compared to the cor-
rections for lens distortion and geometrical projection, the
classification part often takes the longest time, as it is semi-
automatic and requires trial and error testing of which in-
dices and class limits to use for each image as vegetation
and lighting conditions might vary. After a number of images
with similar vegetation and conditions have been classified,
the process goes much faster as the indices and limits will
be roughly the same. One may also need to reclassify parts
manually by moving a square region from one class to an-
other based on visual inspection. The main advantage with
this method of obtaining reference data is however that it is
very fast in the field and works in all weather conditions. In
a test study, we were able to make classifications of about
200 field plots in northern Sweden in a 3-day test campaign
despite rainy and windy conditions. For each field plot, sur-
face area (m2) and coverage (%) were calculated for each
class. The geometrical correction models (lens distortion and
ground projection) were made in about an hour, while the
classifications for all plots took a few days.
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Figure 8. Classification of a field plot image (Fig. 6b) into the six main surface components. All panels have an area of 10× 10 m.
(a) Graminoids, (b) water, (c) shrubs, (d) dry moss, (e) wet moss, (f) rock.

5 Conclusions

This study describes a quick method to document ground sur-
face cover and process the data to make them suitable as ref-
erence data for remote sensing. The method requires a min-
imum of equipment that is frequently used by researchers
and persons with general interest in outdoor activities, and
image recording can be made easily and in a few minutes
per plot without requirements of specific skills or training.
In addition to covering large areas in a short time, it is a ro-
bust method that works in any weather using a waterproof
camera. This provides an alternative to, e.g., using small un-
manned aerial vehicles (UAVs) which are efficient at cover-
ing large areas but have the drawbacks of being sensitive to
both wind and rain and typically having flight times of about
20 min (considerably lower if many takeoffs and landings are
needed when moving between plots). The presented photo-
graphic approach is also possible using a mobile phone cam-
era, although such cameras usually have a very small field
of view compared to many adventure cameras (such as the
GoPro, which is also cheaper than a cellphone). We recom-
mend using a higher camera altitude; a height of 6 m would
make mobile phone imaging of 10× 10 m possible (using a
remote Bluetooth controller) and 20× 20 m mapping using a
camera with a large field of view such as the GoPro. Hence,
if the method becomes widespread and a fraction of those
who visit northern wetlands (or other environments without

dense tall vegetation where the method is suitable) contribute
images and related information, there is a potential for rapid
development of a global database of images and processed
results with detailed land cover for individual satellite pix-
els. In turn, this could become a valuable resource supplying
reference data for remote sensing. To facilitate this develop-
ment, Supplement S1 includes a complete manual and the
authors will assist with early stage image processing and ini-
tiate database development.

Data availability. The data used in this article are a small subset of
our approximately 200 field plots, only used as examples to illus-
trate the steps of the method. More examples are given in the Sup-
plement. The full dataset of field reference data will be published in
a future database.

The Supplement related to this article is available online
at https://doi.org/10.5194/bg-15-1549-2018-supplement.
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